home *** CD-ROM | disk | FTP | other *** search
- 3Q: What are the values of:
-
- largest known Mersenne prime?
-
- A: It is 2^859433-1. It was discovered by a Cray in 1994.
- It has 258,716 digits.
- 1 2^859433-1 258716 SG 94 Mersenne ?
-
- What is the current status on Mersenne primes?
-
- A: Mersenne primes are primes of the form 2^p-1. For 2^p-1 to be prime
- we must have that p is prime. The following Mersenne primes are
- known.
-
- nr p year by
- -----------------------------------------------------------------
- 1-5 2,3,5,7,13 in or before the middle ages
- 6-7 17,19 1588 Cataldi
- 8 31 1750 Euler
- 9 61 1883 Pervouchine
- 10 89 1911 Powers
- 11 107 1914 Powers
- 12 127 1876 Lucas
- 13-14 521,607 1952 Robinson
- 15-17 1279,2203,2281 1952 Lehmer
- 18 3217 1957 Riesel
- 19-20 4253,4423 1961 Hurwitz & Selfridge
- 21-23 9689,9941,11213 1963 Gillies
- 24 19937 1971 Tuckerman
- 25 21701 1978 Noll & Nickel
- 26 23209 1979 Noll
- 27 44497 1979 Slowinski & Nelson
- 28 86243 1982 Slowinski
- 29 110503 1988 Colquitt & Welsh jr.
- 30 132049 1983 Slowinski
- 31 216091 1985 Slowinski
- 32? 756839 1992 Slowinski & Gage
- 33? 859433 1994 Slowinski & Gage
-
- The way to determine if 2^p-1 is prime is to use the Lucas-Lehmer
- test:
- Lucas_Lehmer_Test(p):
- u := 4
- for i from 3 to p do
- u := u^2-2 mod 2^p-1
- od
- if u == 0 then
- 2^p-1 is prime
- else
- 2^p-1 is composite
- fi
-
- The following ranges have been checked completely:
- 2 - 355K and 430K - 520K
-
- More on Mersenne primes and the Lucas-Lehmer test can be found in:
- G.H. Hardy, E.M. Wright, An introduction to the theory of numbers,
- fifth edition, 1979, pp. 16, 223-225.
-
-
- (Please send updates to alopez-o@maytag.UWaterloo.ca)
-
- Alex Lopez-Ortiz alopez-o@maytag.UWaterloo.ca
- Department of Computer Science University of Waterloo
- Waterloo, Ontario Canada
-